Home Nature Two-dimensional heavy fermions in the van der Waals metal CeSiI

Two-dimensional heavy fermions in the van der Waals metal CeSiI

by DIGITAL TIMES
0 comment


  • Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Yazdani, A., da Silva Neto, E. H. & Aynajian, P. Spectroscopic imaging of strongly correlated electronic states. Annu. Rev. Condens. Matter Phys. 7, 11–33 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Löhneysen, H. V., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shishido, H. et al. Tuning the dimensionality of the heavy fermion compound CeIn3. Science 327, 980–983 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mizukami, Y. et al. Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices. Nat. Phys. 7, 849–853 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Naritsuka, M. et al. Tuning the pairing interaction in a d-wave superconductor by paramagnons injected through interfaces. Phys. Rev. Lett. 120, 187002 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jang, B. G., Lee, C., Zhu, J. X. & Shim, J. H. Exploring two-dimensional van der Waals heavy-fermion material: data mining theoretical approach. npj 2D Mater. Appl. 6, 80 (2022).

    Article 

    Google Scholar
     

  • Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

  • Fisk, Z., Sarrao, J. L., Smith, J. L. & Thompson, J. D. The physics and chemistry of heavy fermions. Proc. Natl Acad. Sci. 92, 6663–6667 (1995).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wirth, S. & Steglich, F. Exploring heavy fermions from macroscopic to microscopic length scales. Nat. Rev. Mater. 1, 16051 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andres, K., Graebner, J. E. & Ott, H. R. 4f-virtual-bound-state formation in CeAl3 at low temperatures. Phys. Rev. Lett. 35, 1779 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Auerbach, A. & Levin, K. Kondo bosons and the Kondo lattice: microscopic basis for the heavy Fermi liquid. Phys. Rev. Lett. 57, 877 (1986).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5. Nature 440, 65–68 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimura, N. et al. Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3. Phys. Rev. Lett. 95, 247004 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Steppke, A. et al. Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P1−xAsx)2. Science 339, 933–936 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Monthoux, P., Pines, D. & Lonzarich, G. Superconductivity without phonons. Nature 450, 1177–1183 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Izawa, K. et al. Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5. Phys. Rev. Lett. 87, 057002 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Settai, R. et al. Quasi-two-dimensional Fermi surfaces and the de Haas–van Alphen oscillation in both the normal and superconducting mixed states of CeCoIn5. J. Phys. Condens. Matter 13, L627 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84, 4986 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. S. et al. Growth and properties of heavy fermion CeCu2Ge2 and CeFe2Ge2. Appl. Phys. Lett. 99, 042507 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ishii, T. et al. Tuning the magnetic quantum criticality of artificial superlattices CeRhIn5/YbRhIn5. Phys. Rev. Lett. 116, 206401 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Devarakonda, A. et al. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 370, 231–237 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Levy, P. M. & Zhang, S. Crystal-field splitting in Kondo systems. Phys. Rev. Lett. 62, 78 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R = Y, La, Ce, Sm, Gd, Tb, and Dy). Phys. Rev. B 77, 235104 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Ru, N. & Fisher, I. R. Thermodynamic and transport properties of YTe3, LaTe3, and CeTe3. Phys. Rev. B 73, 033101 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Ramires, A. & Lado, J. L. Emulating heavy fermions in twisted trilayer graphene. Phys. Rev. Lett. 127, 026401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W. et al. Gate-tunable heavy fermions in a moiré Kondo lattice. Nature 616, 61–65 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattausch, H. & Simon, A. Si6, Si14, and Si22 rings in iodide silicides of rare earth metals. Angew. Chem. Int. Ed. 37, 499–502 (1998).

    Article 
    CAS 

    Google Scholar
     

  • White, B. D., Thompson, J. D. & Maple, M. B. Unconventional superconductivity in heavy-fermion compounds. Phys. C 514, 246–278 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Electronic structure and magnetism in the layered triangular lattice compound CeAuAl4Ge2. Phys. Rev. Mater. 1, 044404 (2017).

    Article 

    Google Scholar
     

  • de Boer, F. R. et al. CeCu2Ge2: magnetic order in a Kondo lattice. J. Magn. Magn. Mater. 63-64, 91–94 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Thamizhavel, A. et al. Anisotropic magnetic properties of a pressure-induced superconductor Ce2Ni3Ge5. J. Phys. Soc. Jpn 74, 2843–2848 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kashiba, S., Maekawa, S., Takahashi, S. & Tachiki, M. Effect of crystal field on Kondo resistivity in Ce compounds. J. Phys. Soc. Jpn 55, 1341–1349 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Seiro, S. et al. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal. Nat. Commun. 9, 3324 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aynajian, P. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Patil, S. et al. ARPES view on surface and bulk hybridization phenomena in the antiferromagnetic Kondo lattice CeRh2Si2. Nat. Commun. 7, 11029 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Q. Y. et al. Electronic structure study of LaCoIn5 and its comparison with CeCoIn5. Phys. Rev. B 100, 35117 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reinert, F. et al. Temperature dependence of the Kondo resonance and its satellites in CeCu2Si2. Phys. Rev. Lett. 87, 106401 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Okuma, R., Ritter, C., Nilsen, G. J. & Okada, Y. Magnetic frustration in a van der Waals metal CeSiI. Phys. Rev. Mater. 5, L121401 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Doniach, S. The Kondo lattice and weak antiferromagnetism. Phys. B+C 91, 231–234 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Das, P. et al. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn5. Phys. Rev. Lett. 113, 246403 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

  • Falicov, L. M. & Sievert, P. R. Magnetoresistance and magnetic breakdown. Phys. Rev. Lett. 12, 558 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Fert, A. & Levy, P. M. Theory of the Hall effect in heavy-fermion compounds. Phys. Rev. B 36, 1907 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Navarro-Moratalla, E. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sheldrick, G. M., IUCr. SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst. A 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Sheldrick, G. M., IUCr. Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desgranges, H.-U. & Schotte, K. D. Specific heat of the Kondo model. Phys. Lett. A 91, 240–242 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Scheie, A. PyCrystalField: software for calculation, analysis and fitting of crystal electric field Hamiltonians. J. Appl. Crystallogr. 54, 356–362 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aoki, D., Knafo, W. & Sheikin, I. Heavy fermions in a high magnetic field. C. R. Phys. 14, 53–77 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kitazawa, H., Eguchi, S. & Kido, G. Metamagnetic transition in geometrically frustrated system TbPd1−xNixAl. Phys. B 359–361, 223–225 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Cable, J. W., Wilkinson, M. K., Wollan, E. O. & Koehler, W. C. Neutron diffraction investigation of the magnetic order in MnI2. Phys. Rev. 125, 1860 (1962).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kurumaji, T. et al. Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2. Phys. Rev. Lett. 106, 167206 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Aoki, D. et al. Decoupling between field-instabilities of antiferromagnetism and pseudo-metamagnetism in Rh-doped CeRu2Si2 Kondo lattice. J. Phys. Soc. Jpn 81, 034711 (2012).

    Article 
    ADS 

    Google Scholar
     

  • An, L. et al. Magnetoresistance and Shubnikov–de Haas oscillations in layered Nb3SiTe6 thin flakes. Phys. Rev. B 97, 235133 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. Condens. Matter 9, 767 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liechtenstein, A. I., Katsnelson, M. I., Antropov, V. P. & Gubanov, V. A. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liechtenstein, A. I., Katsnelson, M. I. & Gubanov, V. A. Exchange interactions and spin-wave stiffness in ferromagnetic metals. J. Phys. F: Met. Phys. 14, L125 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, X., Helbig, N., Verstraete, M. J. & Bousquet, E. TB2J: a Python package for computing magnetic interaction parameters. Comput. Phys. Commun. 264, 107938 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Zhao, S. Y. F. et al. Sign-reversing Hall effect in atomically thin high-temperature Bi2.1Sr1.9CaCu2.0O8+δ superconductors. Phys. Rev. Lett. 122, 247001 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moll, P. J. W. et al. Field-induced density wave in the heavy-fermion compound CeRhIn5. Nat. Commun. 6, 6663 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachmann, M. D. et al. Spatial control of heavy-fermion superconductivity in CeIrIn5. Science 366, 221–226 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    You may also like