Narayanamurti, V., Störmer, H. L., Chin, M. A., Gossard, A. C. & Wiegmann, W. Selective transmission of high-frequency phonons by a superlattice: the ‘dielectric’ phonon filter. Phys. Rev. Lett. 43, 2012–2016 (1979).
Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photonics 15, 43–52 (2021).
Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).
Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).
Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).
Slayton, R. M. & Nelson, K. A. Picosecond acoustic transmission measurements. I. Transient grating generation and detection of acoustic responses in thin metal films. J. Chem. Phys. 120, 3908–3918 (2004).
Choi, J. D., Feurer, T., Yamaguchi, M., Paxton, B. & Nelson, K. A. Generation of ultrahigh-frequency tunable acoustic waves. Appl. Phys. Lett. 87, 081907 (2005).
Maznev, A. A. et al. Propagation of THz acoustic wave packets in GaN at room temperature. Appl. Phys. Lett. 112, 061903 (2018).
Sun, C.-K., Liang, J.-C. & Yu, X.-Y. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields. Phys. Rev. Lett. 84, 179–182 (2000).
Huynh, A. et al. Subterahertz phonon dynamics in acoustic nanocavities. Phys. Rev. Lett. 97, 115502 (2006).
Pascual Winter, M. F. et al. Selective optical generation of coherent acoustic nanocavity modes. Phys. Rev. Lett. 98, 265501 (2007).
Chou, T.-H. et al. Long mean free paths of room-temperature THz acoustic phonons in a high thermal conductivity material. Phys. Rev. B 100, 094302 (2019).
Maznev, A. A. et al. Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice. Appl. Phys. Lett. 102, 041901 (2013).
Chen, I.-J. et al. Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons. Nano Lett. 14, 1317–1323 (2014).
Ge, S. et al. Coherent longitudinal acoustic phonon approaching THz frequency in multilayer molybdenum disulphide. Sci. Rep. 4, 5722 (2014).
Jeong, T. Y. et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano 10, 5560–5566 (2016).
Greener, J. D. G. et al. Coherent acoustic phonons in van der Waals nanolayers and heterostructures. Phys. Rev. B 98, 075408 (2018).
Soubelet, P. et al. The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes. Nanoscale 11, 10446–10453 (2019).
Wang, P.-J., Tsai, P.-C., Yang, Z.-S., Lin, S.-Y. & Sun, C.-K. Revealing the interlayer van der Waals coupling of bi-layer and tri-layer MoS2 using terahertz coherent phonon spectroscopy. Photoacoustics 28, 100412 (2022).
Zalalutdinov, M. K. et al. Acoustic cavities in 2D heterostructures. Nat. Commun. 12, 3267 (2021).
George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).
Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507–511 (2018).
Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).
Waldecker, L. et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys. Rev. Lett. 123, 206403 (2019).
Florian, M. et al. The dielectric impact of layer distances on exciton and trion binding energies in van der Waals heterostructures. Nano Lett. 18, 2725–2732 (2018).
Yoon, Y. et al. Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Lett. 22, 10140–10146 (2022).
Serrano, J. et al. Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. Phys. Rev. Lett. 98, 095503 (2007).
Stenger, I. et al. Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals. 2D Mater. 4, 031003 (2017).
Jiménez-Riobóo, R. J. et al. In- and out-of-plane longitudinal acoustic-wave velocities and elastic moduli in h-BN from Brillouin scattering measurements. Appl. Phys. Lett. 112, 051905 (2018).
Lynch, R. W. & Drickamer, H. G. Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride. J. Chem. Phys. 44, 181–184 (1966).
Bosak, A. et al. Elasticity of hexagonal boron nitride: inelastic X-ray scattering measurements. Phys. Rev. B 73, 041402 (2006).
Green, J. F., Bolland, T. K. & Bolland, J. W. Theoretical elastic behavior for hexagonal boron nitride. J. Chem. Phys. 64, 656–662 (1976).
Ohba, N., Miwa, K., Nagasako, N. & Fukumoto, A. First-principles study on structural, dielectric, and dynamical properties for three BN polytypes. Phys. Rev. B 63, 115207 (2001).
Jiang, P., Qian, X., Yang, R. & Lindsay, L. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater. 2, 064005 (2018).
Legrand, R., Huynh, A., Jusserand, B., Perrin, B. & Lemaître, A. Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs. Phys. Rev. B 93, 184304 (2016).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Ziman, J. M. Electrons and Phonons (Oxford Univ. Press, 2001);
Volokitin, A. I., Persson, B. N. J. & Ueba, H. Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems. Phys. Rev. B 73, 165423 (2006).
Lee, M., Vink, R. L. C., Volkert, C. A. & Krüger, M. Noncontact friction: role of phonon damping and its nonuniversality. Phys. Rev. B 104, 174309 (2021).
Zhao, Y. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013).
Wu, H. et al. Probing the interfacial coupling in ternary van der Waals heterostructures. npj 2D Mater. Appl. 6, 87 (2022).
Liang, L. et al. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano 11, 11777–11802 (2017).
Lui, C. H. et al. Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 12, 5539–5544 (2012).
Lui, C. H. & Heinz, T. F. Measurement of layer breathing mode vibrations in few-layer graphene. Phys. Rev. B 87, 121404 (2013).
Jaffe, G. R. et al. Thickness-dependent cross-plane thermal conductivity measurements of exfoliated hexagonal boron nitride. ACS Appl. Mater. Interfaces 15, 12545–12550 (2023).
Na, Y. S. et al. Irreversible conductive filament contacts for passivated van der Waals heterostructure devices. Adv. Funct. Mater. 32, 2207351 (2022).
Rooney, A. P. et al. Observing imperfection in atomic interfaces for van der Waals heterostructures. Nano Lett. 17, 5222–5228 (2017).
Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).
Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).
Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009).
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).
Sabatini, R., Gorni, T. & de Gironcoli, S. Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B 87, 041108 (2013).
Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).
Wirtz, L. & Rubio, A. The phonon dispersion of graphite revisited. Solid State Commun. 131, 141–152 (2004).
Schabel, M. C. & Martins, J. L. Energetics of interplanar binding in graphite. Phys. Rev. B 46, 7185–7188 (1992).
Dubay, O. & Kresse, G. Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes. Phys. Rev. B 67, 035401 (2003).
Ye, L.-H., Liu, B.-G., Wang, D.-S. & Han, R. Ab initio phonon dispersions of single-wall carbon nanotubes. Phys. Rev. B 69, 235409 (2004).
Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005).
Cuscó, R. et al. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: isotopically pure hexagonal boron nitride. Phys. Rev. B 97, 155435 (2018).