Home Nature Terahertz phonon engineering with van der Waals heterostructures

Terahertz phonon engineering with van der Waals heterostructures

by DIGITAL TIMES
0 comment


  • Narayanamurti, V., Störmer, H. L., Chin, M. A., Gossard, A. C. & Wiegmann, W. Selective transmission of high-frequency phonons by a superlattice: the ‘dielectric’ phonon filter. Phys. Rev. Lett. 43, 2012–2016 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photonics 15, 43–52 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Slayton, R. M. & Nelson, K. A. Picosecond acoustic transmission measurements. I. Transient grating generation and detection of acoustic responses in thin metal films. J. Chem. Phys. 120, 3908–3918 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. D., Feurer, T., Yamaguchi, M., Paxton, B. & Nelson, K. A. Generation of ultrahigh-frequency tunable acoustic waves. Appl. Phys. Lett. 87, 081907 (2005).

  • Maznev, A. A. et al. Propagation of THz acoustic wave packets in GaN at room temperature. Appl. Phys. Lett. 112, 061903 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sun, C.-K., Liang, J.-C. & Yu, X.-Y. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields. Phys. Rev. Lett. 84, 179–182 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huynh, A. et al. Subterahertz phonon dynamics in acoustic nanocavities. Phys. Rev. Lett. 97, 115502 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pascual Winter, M. F. et al. Selective optical generation of coherent acoustic nanocavity modes. Phys. Rev. Lett. 98, 265501 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, T.-H. et al. Long mean free paths of room-temperature THz acoustic phonons in a high thermal conductivity material. Phys. Rev. B 100, 094302 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maznev, A. A. et al. Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice. Appl. Phys. Lett. 102, 041901 (2013).

  • Chen, I.-J. et al. Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons. Nano Lett. 14, 1317–1323 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, S. et al. Coherent longitudinal acoustic phonon approaching THz frequency in multilayer molybdenum disulphide. Sci. Rep. 4, 5722 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, T. Y. et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano 10, 5560–5566 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greener, J. D. G. et al. Coherent acoustic phonons in van der Waals nanolayers and heterostructures. Phys. Rev. B 98, 075408 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Soubelet, P. et al. The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes. Nanoscale 11, 10446–10453 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, P.-J., Tsai, P.-C., Yang, Z.-S., Lin, S.-Y. & Sun, C.-K. Revealing the interlayer van der Waals coupling of bi-layer and tri-layer MoS2 using terahertz coherent phonon spectroscopy. Photoacoustics 28, 100412 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zalalutdinov, M. K. et al. Acoustic cavities in 2D heterostructures. Nat. Commun. 12, 3267 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507–511 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waldecker, L. et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys. Rev. Lett. 123, 206403 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Florian, M. et al. The dielectric impact of layer distances on exciton and trion binding energies in van der Waals heterostructures. Nano Lett. 18, 2725–2732 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon, Y. et al. Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Lett. 22, 10140–10146 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Serrano, J. et al. Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. Phys. Rev. Lett. 98, 095503 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stenger, I. et al. Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals. 2D Mater. 4, 031003 (2017).

    Article 

    Google Scholar
     

  • Jiménez-Riobóo, R. J. et al. In- and out-of-plane longitudinal acoustic-wave velocities and elastic moduli in h-BN from Brillouin scattering measurements. Appl. Phys. Lett. 112, 051905 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lynch, R. W. & Drickamer, H. G. Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride. J. Chem. Phys. 44, 181–184 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bosak, A. et al. Elasticity of hexagonal boron nitride: inelastic X-ray scattering measurements. Phys. Rev. B 73, 041402 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Green, J. F., Bolland, T. K. & Bolland, J. W. Theoretical elastic behavior for hexagonal boron nitride. J. Chem. Phys. 64, 656–662 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ohba, N., Miwa, K., Nagasako, N. & Fukumoto, A. First-principles study on structural, dielectric, and dynamical properties for three BN polytypes. Phys. Rev. B 63, 115207 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, P., Qian, X., Yang, R. & Lindsay, L. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater. 2, 064005 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Legrand, R., Huynh, A., Jusserand, B., Perrin, B. & Lemaître, A. Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs. Phys. Rev. B 93, 184304 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ziman, J. M. Electrons and Phonons (Oxford Univ. Press, 2001);

  • Volokitin, A. I., Persson, B. N. J. & Ueba, H. Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems. Phys. Rev. B 73, 165423 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Lee, M., Vink, R. L. C., Volkert, C. A. & Krüger, M. Noncontact friction: role of phonon damping and its nonuniversality. Phys. Rev. B 104, 174309 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, H. et al. Probing the interfacial coupling in ternary van der Waals heterostructures. npj 2D Mater. Appl. 6, 87 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liang, L. et al. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano 11, 11777–11802 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lui, C. H. et al. Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 12, 5539–5544 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lui, C. H. & Heinz, T. F. Measurement of layer breathing mode vibrations in few-layer graphene. Phys. Rev. B 87, 121404 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Jaffe, G. R. et al. Thickness-dependent cross-plane thermal conductivity measurements of exfoliated hexagonal boron nitride. ACS Appl. Mater. Interfaces 15, 12545–12550 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na, Y. S. et al. Irreversible conductive filament contacts for passivated van der Waals heterostructure devices. Adv. Funct. Mater. 32, 2207351 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rooney, A. P. et al. Observing imperfection in atomic interfaces for van der Waals heterostructures. Nano Lett. 17, 5222–5228 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article 
    ADS 

    Google Scholar
     

  • van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sabatini, R., Gorni, T. & de Gironcoli, S. Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B 87, 041108 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wirtz, L. & Rubio, A. The phonon dispersion of graphite revisited. Solid State Commun. 131, 141–152 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schabel, M. C. & Martins, J. L. Energetics of interplanar binding in graphite. Phys. Rev. B 46, 7185–7188 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dubay, O. & Kresse, G. Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes. Phys. Rev. B 67, 035401 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Ye, L.-H., Liu, B.-G., Wang, D.-S. & Han, R. Ab initio phonon dispersions of single-wall carbon nanotubes. Phys. Rev. B 69, 235409 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Cuscó, R. et al. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: isotopically pure hexagonal boron nitride. Phys. Rev. B 97, 155435 (2018).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    You may also like